

DATA SHEET

Product Name Wire-Wound Film Fixed Resistors

Part Name KNS Series File No. DIP-SP-010

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33			
Email	marketing@uni-royal.cn			
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.			
	Aeon Technology Corporation			
	Royal Electronic Factory (Thailand) Co., Ltd.			
	Royal Technology (Thailand) Co., Ltd.			

1. Scope

1.1 This datasheet is the characteristics of Wire-Wound Film Fixed Resistors manufactured by UNI-ROYAL

- 1.2 Excellent flame retardant coating
- 1.3 Too low or too high ohmic value can be supplied on a case to basis
- 1.4 Non-inductive type available

1.5 Compliant with RoHS directive.

1.6 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 Wire-Wound Fixed Resistors type, the 1st to 3rd digits are to indicate the product type and 4th digit is the special feature.

Example: KNS= Wire-Wound Fixed Resistors type.

2.2 $5^{\text{th}} \sim 6^{\text{th}}$ digits:

2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; "1"~"G"to denotes"1"~"16"as Hexadecimal:

 $1W \sim 16W (\ge 1W)$

Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1W	2W	3W	5W	7W	8W	9W	AW	FW

2.2.2 For power of 1 watt to 16 watt, the 5^{th} digit will be a number or a letter code and the 6^{th} digit will be the letters of W, S or U.

Example: AW=10W; 3S=3W-S

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm 5\%$ K= $\pm 10\%$

2.4 The 8th to 11th digits is to denote the Resistance Value.

2.4.1 For the standard resistance values of E-24 series, the 8^{th} digit is "0", the 9^{th} & 10^{th} digits are to denote the significant figures of the resistance and the 11^{th} digit is the number of zeros following.;

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

$$0=10^{0} \quad 1=10^{1} \quad 2=10^{2} \quad 3=10^{3} \quad 4=10^{4} \quad 5=10^{3}$$

$$6=10^6$$
 J= 10^{-1} K= 10^{-2} L= 10^{-3} M= 10^{-4}

2.4.3 The 12th, 13th & 14th digits.

The 12th digit is to denote the Packaging Type with the following codes:

A=Tape/Box (Ammo pack) B=Bulk/Box

T=Tape/Reel P=Tape/Box of PT-26 products

2.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. The following letter code is to be used

for some packing quantities:

A=500pcs B=2500pcs C=10000pcs

D=20000pcs G=25000pcs H=50000pcs

2.4.5 For the FORMED type products, the 13th & 14th digits are used to denote the forming types of the product with the following letter codes:

MF=M-type with flattened lead wire	F0= F-type
MK= M-type with kinked lead wire	F1=F1-type
ML= M-type with normal lead wire	F2=F2-type
MC= M-type with bending lead wire	F3=F3-type

2.4.6 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

P=Panasert type 1=Avisert type 1 2=Avisert type 2

3=Avisert type 3 A=Cutting type CO 1/4W-A type B= Cutting type CO 1/4W-B type

Wire-Wound Fixed Resistors

3. Ordering Procedure

(Example: KNS 3W ±5% 100Ω B/B)

4. Marking

Example:

Code description and regulation:

- 1. Wattage Rating
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. J: \pm 5%

K: ± 10%

Color of marking: Black Ink

Wire-Wound Fixed Resistors

5. <u>Ratings & Dimension</u>

Tuna	Dimension(mm)						Tolerance	Resistance Range	
Туре	D±1.0	L±1.5	P±1.0	H±1.0	h±1.0	B±0.5	Tolerance	Resistance Range	
KNS 2W	7.0	19.0	8	19	12	4.5	±5% \ ±10%	0.05Ω~470Ω	
KNS 3W	7.0	21.0	10	19	13	4.5	±5% \ ±10%	$0.068\Omega \sim 470\Omega$	
KNS 5W	9.0	26.0	15	21.5	13	6.5	±5% \ ±10%	0.01Ω~750Ω	
KNS 7W	9.0	31.0	20	21.5	13	6.5	±5% \ ±10%	0.1Ω~1.1ΚΩ	
KNS 8W	9.0	41.0	30	21.5	13	6.5	±5% \ ±10%	0.2Ω~2.2ΚΩ	
KNS 10W	9.0	54.0	43	21.5	13	6.5	±5% 、±10%	0.3Ω~3.3ΚΩ	

6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.) R = nominal resistance (OHM)

7. Structure

No.	Name	Raw Materials		
1	Basic body	Rod type ceramics		
2	Alloy wire	Alloy		
3	End cap	Steel (Tin plated iron surface)		
4	Terminal lug	Steel (Tin plated iron surface)		
5	Joint	By welding		
6	Coating	Color: Deep Green		
7	Marking	Epoxy resin		

8. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)			
Temperature Coefficient	≥ 20Ω: ±300PPM/°C <20Ω: ±400PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 (PPM/^{\circ}C)$ R_1: Resistance Value at room temperature (t_1); R_2: Resistance at test temperature (t_2) t_1: +25 °C or specified room temperature t_2: Test temperature (-55 °C or 125 °C)			
Short-Time Overload	Resistance change rate must be in: $\pm (2\%+0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.			
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 			
Resistance to soldering heat	Resistance change rate must be in $\pm (1\%+0.05\Omega)$, and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}C$ solder for 10 ± 1 seconds.			
Solderability	95% Coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Temperature of solder:245 °C ±3 °C Dwell time in solder: 2~3seconds. 			
Load life in humidity	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	7.9 Resistance change after 1000 hours (1.5hours "ON", 0.5hours "OFF") at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at $40\pm2^{\circ}$ C and 93% $\pm3\%$ RH.			
Load life Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.		4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $70\pm2^{\circ}$ C ambient.			
Low Temperature Storage	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.			
High Temperature Exposure	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	MIL-STD-202 108A Upper limit temperature , for 16H.			
Rapid change of temperature	Resistance change rate must be in $\pm(2\%+0.05\Omega)$, and no mechanical damage.	4.19 30 min at -55 °C and 30 min at 155 °C; 100 cycles.			

9. <u>Note</u>

9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 ℃ under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

9.3. Storage conditions as below are inappropriate:

- a. Stored in high electrostatic environment
- b. Stored in direct sunshine, rain, snow or condensation.

c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, etc.

Wire-Wound Fixed Resistors

10	. <u>Record</u>					
	Version	Description	Page	Date	Amended by	Checked by
	1	First issue of this specification	1~6	Mar.20, 2018	Haiyan Chen	Nana Chen
-	2	 Modify the Derating Curve Modify characteristic 	4 5	Feb.19, 2019	Haiyan Chen	Yuhua Xu
_	3	Modify the temperature coefficient test conditions	5	Oct.28, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice