

DATA SHEET

Product Name High Surge Radial Type Cement Fixed Resistors

Part NamePRMS SeriesFile No.DIP-SP-088

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33		
Email	marketing@uni-royal.cn		
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.		
	Aeon Technology Corporation		
	Royal Electronic Factory (Thailand) Co., Ltd.		
	Royal Technology (Thailand) Co., Ltd.		

1. <u>Scope</u>

- 1.1 This data sheet is the characteristics of Radial Type Cement Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Self-extinguishing
- 1.3 Extremely small & sturdy mechanically safe
- 1.4 Excellent flame & moisture resistance
- 1.5 Compliant with RoHS directive.
- 1.6 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example: PRMS=PRMS type
- 2.2 $5^{th} \sim 6^{th}$ digits:
- 2.2.1 The 5th and 6th digit will be a number or a letter code.

Example: 20=20W

- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. Example: J=±5%
- 2.4 The 8^{th} to 11^{th} digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" to denote Wire-wound type respectively of the Cement Fixed Resistor product.
- 2.4.2 E-24 series in 2% & 5% & 10% tolerance, the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following
 Example: W100=10Ω
- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0"for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

3. Ordering Procedure

(Example: PRMS 10W ±5% 10Ω B/B)

4. <u>Dimension</u> (unit: mm)

Туре	W±1	D±1	L±1	L1±1	P±1	Φd±0.05
PRMS 5W	13.5	9	25	5	5	0.75
PRMS 7W	15	9	38	10	7.5	0.75
PRMS 10W	16	12	38	10	7.5	0.75

5. Circuit Diagram

6. <u>Ratings</u>

Туре	Power Rating	Tolerance	Max. Working Voltage	Max. Overload Voltage	Resistance Range
PRMS	5W	±5%、±10%	350V	700V	1.5Ω~2ΚΩ
PRMS	7W	±5%、±10%	500V	1000V	1.8Ω~2ΚΩ
PRMS	10W	±5%, ±10%	700V	1400V	2.7Ω~4ΚΩ

7. Marking

Example:

Code description and regulation:

- 1. Product type
- 2. Wattage Rating. 20=20W
- 3. Nominal Resistance Value.
- 4. Resistance Tolerance. J: \pm 5%
- 5. Pattern: W: Wire-wound Color of marking: Black Ink
- (Note : The marking code shall be prevailed in kind!)

8. <u>Structure</u>

No.	Name
1	Lead Wire
2	End Cap
3	Alloy wire
4	Ceramics Rod
5	Cement paste
6	Ceramic Case

9. Derating Curve

9.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternatingcurrent (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

10. <u>Curve of Pulse Duration</u>

11. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)			
Temperature Coefficient	$ <20\Omega : \pm 400 \text{PPM/°C} \ge20\Omega : \pm 350 \text{PPM/°C} $	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 \cdot R_1}{R_1(t_2 - t_1)} \times 10^6 (\text{PPM/°C})$ R_1: Resistance Value at room temperature (t_1); R_2: Resistance at test temperature (t_2) t_1: +25°C or specified room temperature t_2: Room temperature +100°C			
Short-time overload	Resistance change rate must be in: $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.			
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Apply 1000VAC for 60 seconds.			
Resistance to soldering heat	Resistance change rate must be in $\pm (1\%+0.05\Omega)$, and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}c$ solder for 10 ± 1 seconds.			
Solderability	95% coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245°C±3°C Dwell time in solder: 2~3seconds. 			
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 			
Load life in humidity	$\Delta R/R \leq \pm (5\% + 0.05\Omega)$	7.9 Resistance change after 1,000 hours (1.5 hours "ON", 0.5 hour "OFF") at RCWV or Max. Working Voltage whichever less in a humidity test chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and $93\% \pm 3\%$ relative humidity.			
Load life	$\Delta R/R \leqslant \pm (5\% + 0.05\Omega)$	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV or Max. Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70°C±2°C ambient.			

12. <u>Note</u>

9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

9.3. Storage conditions as below are inappropriate:

- a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br, etc.

13. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Aug.08, 2023	Haiyan Chen	Yuhua Xu
	1.Modify the dimension and resistance				
2	range	4	May.25, 2024	Haiyan Chen	Yuhua Xu
	2. Modify the curve of pulse duration				

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice.