

DATA SHEET

Product Name Radial Terminal Type-PRZ Series Resistors

Part Name PRZ Series File No. DIP-SP-042

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33				
Email	marketing@uni-royal.cn				
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.				
	Aeon Technology Corporation				
	Royal Electronic Factory (Thailand) Co., Ltd.				
	Royal Technology (Thailand) Co., Ltd.				

1. Scope

1.1 This datasheet is the characteristics of Radial Terminal Type-PRZ Series manufactured by UNI-ROYAL.

- 1.2 Self-extinguishing
- 1.3 Extremely small & moisture resistance
- 1.4 Too low or too high values on Wire-wound & power-film type can be supplied on a case to case basis
- 1.5 Compliant with RoHS directive.
- 1.6 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example: PZ1A=PRZA-1 type PZ2A=PRZA-2 type PRZC=PRZC type

PZ1C=PRZC-1 type PRZD=PRZD type

```
2.2 5^{th} \sim 6^{th} digits:
```

- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W. Example: 3W=3W 5W=5W 7W=7W AW=10W FW=15W
- 2.2.2 For power rating between 20 watt to 99 watt, the 5th and the 6th digits will show the whole numbers of the power rating itself. Example: 20=20W

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm 5\%$ K= $\pm 10\%$

2.4 The $8^{\rm th}$ to $11^{\rm th}$ digits is to denote the Resistance Value.

2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th to 11th please refer to point a) of item 4.

Example: W12J=1.2Ω W120=12Ω P273=27KΩ

2.5 The 12th, 13th & 14th digits.

2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with

"Bulk/Box" packing requirements.

2.5.3 For some items, the 14^{th} digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

3. Ordering Procedure

(Example: PRZC 15W $\pm 5\%$ 10 Ω B/B)

4. Marking

Example:

Code description and regulation:

- 1. Wattage Rating
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. J: \pm 5%

K: ± 10%

4. Pattern:

M: Power film W: Wire wound

Color of marking: Black Ink

Note: The marking code shall be prevailed in kind!

5. Ratings & Dimension

5.1 PRZA-1Types:

	Dimension(mm)							-	Resistance Range	
Туре	W±1	D±1	L	P±1.5	T1±1	T2±0.2	+2 H1 -1	+2 H2 -1	Wire Wound	Power Film
3W	10	9	22±1	9.5	7	1.6	24	10	0.1Ω~47Ω	48Ω~150ΚΩ
5W	10	9	25/27±1	9.5/15	7	1.6	24	10	0.1Ω~120Ω	121Ω~200ΚΩ
7W	10	9	35±1	22	7	1.6	24	10	0.1Ω~560Ω	561Ω~200ΚΩ
10W	10	9	48±1.5	32/35	7	1.6	24	10	1Ω~820Ω	821Ω~200ΚΩ
15W	12.5	11.5	48±1.5	32	10	3	35	15	1Ω~1ΚΩ	1.1ΚΩ~200ΚΩ
20W	12.5	13.5	63±1.5	42	10	3	35	15	2Ω~1.2ΚΩ	1.3KΩ~200KΩ

5.2 PRZA-2 Types:

	Dimension(mm)								Resistance Range	
Туре	W±1	D±1	L	P±1.5	T1±1	T2±0.2	+2 H1	+2 H2	Wire Wound	Power Film
							-1	-1		
3W	10	9	22±1	9.5	7	1.6	39	25	0.1Ω~47Ω	48Ω~150ΚΩ
5W	10	9	27±1	15	7	1.6	39	25	0.1Ω~120Ω	121Ω~200ΚΩ
7W	10	9	35±1	22	7	1.6	39	25	0.1Ω~560Ω	561Ω~200ΚΩ
10W	10	9	48±1.5	32/35	7	1.6	39	25	1Ω~820Ω	821Ω~200ΚΩ
15W	12.5	11.5	48±1.5	32	10	3	47	30	1Ω~1ΚΩ	1.1ΚΩ~200ΚΩ
20W	12.5	13.5	63±1.5	42	10	3	47	30	2Ω~1.2ΚΩ	1.3KΩ~200KΩ

5.3 PRZC Types:

				Resistance Range							
Туре	W±1	D±1	L	P±1.5	T1±1	T2±0.2	T3±0.5	+2 H1 -1	+2 H2 -1	Wire Wound	Power Film
3W	10	9	22±1	9.5	7	1.5	3.5	36	22	0.1Ω~47Ω	48Ω~150ΚΩ
5W	10	9	27±1	15	7	1.5	3.5	36	22	0.1Ω~120Ω	121Ω~200ΚΩ
7W	10	9	35±1	22	7	1.5	3.5	36	22	0.1Ω~560Ω	561Ω~200ΚΩ
10W	10	9	48±1.5	32/35	7	1.5	3.5	36	22	1Ω~820Ω	821Ω~200ΚΩ
15W	12.5	11.5	48±1.5	32	10	2	5	47	30	1Ω~1ΚΩ	1.1ΚΩ~200ΚΩ
20W	12.5	13.5	63±1.5	42	10	2	5	47	30	2Ω~1.2ΚΩ	1.3KΩ~200KΩ

5.4 PRZC-1 Type

	Dimension(mm)									Resistan	ce Range
Туре	W±1	D±1	L	P±1.5	T1±1	T2±0.2	T3±0.5	+2 H1 -1	+2 H2 -1	Wire Wound	Power Film
5W	10	9	27±1	15	7	1.3	3.5	39	24	0.1Ω~120Ω	121Ω~200ΚΩ
7W	10	9	35±1	22	7	1.3	3.5	39	24	0.1Ω~560Ω	561Ω~200KΩ

5.5 PRZD Type

				Resistance Range							
Туре	W±1	D±1	L	P±1.5	T1±1	T2±0.2	T3±0.5	+2 H1 -1	+2 H2 -1	Wire Wound	Power Film
3W	10	9	22±1	9.5	7	1.3	3.5	24	10	0.1Ω~47Ω	48Ω~150ΚΩ
5W	10	9	27±1	15	7	1.3	3.5	24	10	0.1Ω~120Ω	121Ω~200ΚΩ
7W	10	9	35±1	22	7	1.3	3.5	24	10	0.1Ω~560Ω	561Ω~200ΚΩ
10W	10	9	48±1.5	32/35	7	1.3	3.5	24	10	1Ω~820Ω	821Ω~200KΩ

6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.) R= nominal resistance (OHM)

7. Structure

No.	Name	Material Generic Name			
1	Body	Al ₂ O ₃			
2	Cap Tin plated iron				
3	Resistor element	Power: Metal Oxide Film			
3	Resistor element	Wire wound: Alloy Wire			
4	Ceramic case	Al ₂ O ₃ Cao			
5	Filling materials	SiO ₂			

8. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	≥20Ω: ±350PPM/°CMax <20Ω: ±400PPM/°CMax	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 (PPM/^{\circ}C)$ R ₁ : Resistance Value at room temperature (t ₁); R ₂ : Resistance at test temperature (t ₂) t ₁ : +25°C or specified room temperature t ₂ : Test temperature (-55°C or 125°C)
Short-time overload	Resistance change rate must be in $\pm(5\%+0.05\Omega)$,and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω), and no mechanical damage.	 4.18 Permanent resistance change when leads immersed to a point 2.0- 2.5mm from the body in 260°C±5°c solder for 10±1 seconds.
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds for cement fixed resistors the testing voltage is 1000V.
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.
Solderability	95% coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C±3 °C Dwell time in solder: 2~3seconds.
Humidity (Steady state)	Resistance change rate must be in $\pm(5\%+0.05\Omega)$,and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40 ± 2 °C and 90~95%RH relative humidity
Load life in humidity	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \Delta R/R$: $\pm 10\%$	7.9 Resistance change after 1000 hours (1.5 hours "ON", 0.5 hours "OFF") at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at 40 ± 2 °C and 93% ±3 % RH.
Load life	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $<100K\Omega \Delta R/R$: ±5% $\ge 100K\Omega \Delta R/R$: ±10%	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25\pm2^{\circ}$ C or $70\pm2^{\circ}$ C ambient.
Low Temperature Storage	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.
High Temperature Exposure	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \Delta R/R$: $\pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.

9. <u>Note</u>

- 9.1 UNI-ROYAL recommend the storage condition temperature: 15°C~35°C, humidity :25%~75%. (Put condition for individual product)
 - Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) many be degraded.
- 9.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

9.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:

- a. Storage in high Electrostatic.
- b. Storage in direct sunshine $\, \cdot \,$ rain and snow or condensation.
- c. Where the products are exposed to sea winds or corrosive gases, including Cl_2 , H_2S_3 NH_3 , SO_2 , NO_2 .

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~7	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	6	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	6	Nov.07, 2022	Haiyan Chen	Yuhua Xu
5	1.Modify derating curve 2.Modify the load life test conditions	3 5	Sep.27, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice