

DATA SHEET

Product Name Power Flat Alloy Resistors

Part Name PFAP Series File No. DIP-SP-034

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33		
Email	marketing@uni-royal.cn		
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.		
	Aeon Technology Corporation		
	Royal Electronic Factory (Thailand) Co., Ltd.		
	Royal Technology (Thailand) Co., Ltd.		

Power Flat Alloy Resistors

1. <u>Scope</u>

- 1.1 This datasheet is the characteristics of Power Flat Alloy Resistors manufactured by UR.
- 1.2 Low inductance
- 1.3 Safety flameroof construction
- 1.4 Thin lightweight body save the PCB space considerably

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4th digit will be "0" Example: PFAP=PFAP-type
- 2.2 $5^{\text{th}} \sim 6^{\text{th}}$ digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.

Example: 2W=2W

- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ K= $\pm10\%$
- 2.4 The 8^{th} to 11^{th} digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;
- 2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

$$0=10^{0}$$
 $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$

$$6{=}10^6 \text{ J}{=}10^{\text{-1}} \text{ K}{=}10^{\text{-2}} \text{ L}{=}10^{\text{-3}} \text{ M}{=}10^{\text{-4}}$$

- 2.5 The 12^{th} , 13^{th} & 14^{th} digits.
- 2.5.1 The 12^{th} digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

2.5.2 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. Using "0" to indicate the Bulk packaging types, the following letter codes is to be used for some packing quantities:

A=500pcs B=2500pcs C=10000pcs

D=20000pcs G=25000pcs H=50000pcs

2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

3. Ordering Procedure

(Example: PFAP 5W $\pm 5\%$ 0.015 Ω T/B-1000)

4. Marking

Example:

Code description and regulation:

- 1. Wattage Rate
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. J: \pm 5%

K: ± 10%

Color of marking: Black Ink

5. <u>Ratings & Dimension</u>

Туре	Dimension(mm)							
	A±1.0	B±1.0	C±0.5	d±0.05	P±1.0	H±1.0	Tolerance	Resistance Range
PFAP 2W	13.0	8.5	5.0	0.75	9		±5% \ ±10%	0.01Ω~1Ω
PFAP 3W	14.0	13.5	5.0	0.75	&	4 & 10	±5% 、±10%	0.01Ω~1Ω
PFAP 5W	14.0	18.0	5.0	0.75	10		±5% 、±10%	0.01Ω~1Ω
PFAP 10W	26.0	18.0	5.0	0.75	20		±5% 、±10%	0.01Ω-3.3Ω

6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.) P = power rating (WATT.) R= nominal resistance (OHM)

No.	Name	Material Generic Name
1	Ceramic case	Steatite
2	Cement	SiO ₂
3	Terminal	Copper wire Platted with tin
4	Weld point	/
5	Alloy ribbon	Ni & Cr

8. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)			
Temperature Coefficient	$0.01\Omega \sim 0.1\Omega$ Please contact uniohm $\geq 0.1\Omega$: ± 350 PPM/°C;	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 \cdot R_1}{R_1(t_2 \cdot t_1)} \times 10^6 (PPM/^{\circ}C)$ R ₁ : Resistance Value at room temperature (t ₁); R ₂ : Resistance at test temperature (t ₂) t ₁ : +25°C or specified room temperature t ₂ : Test temperature (-55°C or 125°C)			
Short-time overload	Resistance change rate must be in $\Delta R/R \le \pm (2\% \pm 0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times rcwv for 5 seconds.			
Dielectric withstanding voltage	2000V	4.7 Resistors shall be clamped in the trough of a 90° metallic v-block and shall be tested at ac potential respectively for 60+10/-0 seconds.			
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads.			
Resistance to soldering heat	Resistance change rate must be in $\Delta R/R \le \pm (1\% + 0.05\Omega)$, and no mechanical damage.	 4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260°C±5°C solder for 10±1 seconds. 			
Resistance to solvent	No deterioration of protective coating and markings	4.29 Speciments shall be immersed in a bath of sopropanol completely for 3 minutes with ultrasonic.			
Solderability	95% coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C ±3 °C Dwell time in solder: 2~3seconds. 			
Humidity (Steady state)	Resistance change rate must be in $\Delta R/R \le \pm (5\% \pm 0.05\Omega)$, and no mechanical damage.	4.24 Temporary resistance change after a 240 hours exposure in a humidity test chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and 90 to 95% relative humidity.			
Load life in humidity	Resistance change rate must be in $\Delta R/R \le \pm (5\%+0.05\Omega)$, and no mechanical damage.	7.9 Resistance change after 1,000 hours (1.5 hours "ON", 0.5 hour "OFF") at RCWV in a humidity test chamber controlled at $40^{\circ}C\pm 2^{\circ}C$ and 90 to 95% relative humidity.			

Power Flat Alloy Resistors

Load life	Resistance change rate must be in $\Delta R/R \leq \pm (5\% + 0.05\Omega)$, and no mechanical damage.	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70°C ± 2 °C ambient.
Low Temperature Storage	Resistance change rate must be in $\Delta R/R \le \pm (5\% + 0.05\Omega)$, and no mechanical damage.	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.
High Temperature Exposure	Resistance change rate must be in $\Delta R/R \le \pm (5\% + 0.05\Omega)$, and no mechanical damage.	MIL-STD-202 108A Upper limit temperature , for 16H.

9. <u>Note</u>

9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35℃ under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

9.3. Storage conditions as below are inappropriate:

a. Stored in high electrostatic environment

b. Stored in direct sunshine, rain, snow or condensation.

c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

10. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	4	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice