

DATA SHEET

Product Name Cement Thermal Fusible Resistors

Part Name FTR Series File No. DIP-SP-053

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Cement Thermal Fusible Resistors manufactured by UNI-ROYAL.
- 1.2 Self-extinguishing
- 1.3 Excellent flame & moisture resistance
- 1.4 Extremely small & sturdy mechanically safe
- 1.5 Non-inductive type available
- 1.6 Circuit protection applied to industrial and motor control

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 Cement Thermal Fusible Resistors the 1st to 3rd digits are to indicate the product type.
- Example: PF3=FTR3
- 2.2 The 4th digit is to Fusing Temp

Example: A=98°C B=104°C

2.3 The $5^{\text{th}} - 6^{\text{th}}$ digit is to Wattage

Example: 14=1.4W 15=1.5W

- 2.4 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ $K=\pm10\%$
- 2.5 The 8th to 11th digits is to denote the Resistance Value.
- 2.5.1 For Cement Fixed Resistors the 8th digits will be coded with "W" to denote Wire-wound type respectively of the Cement Fixed Resistor product .The 9th to 11th please refer to point a) of item 4.
- Example: W10J=1 Ω W120=12 Ω 2.6 The 12th digit is to denote the Packaging Type with the following codes:
- B=Bulk /Box
- 2.7 The 13^{th} digit is to denote the Packing Qty
 - 0=Bulk/Box
- 2.8 The 14th digit is to denote the Current Rating: Example:2=2A ; 5=5A; A=10A

3. Ordering Procedure

(Example: FTR-5G 2.8W \pm 5% 1.5 Ω 2A B/B)

4. <u>Ratings & Dimension</u>4.1 Dimension

Part No.	Туре	W±2	D±2	L±2	P±1	d1±0.05	d2±0.05
PF2	FTR2	12	7	21	5	0.6	0.75
PF3	FTR3	12	8	26	5	0.6	0.75
PF5	FTR5	13	9	26	5	0.6	0.75
PF7	FTR7	13	9	38.5	5	0.6	0.75
PFA	FTR10	16	13	35	7.5	0.6	0.75

4.2 Fusing Temperature Code

Current Voltage Rating Rating						
	С	D	Е	G	Resistance Range	
	117℃	125℃	130℃	150℃		
		1.6W	1.9W	2.0W	2.0W	0.22Ω~270Ω
		1.7W	2.0W	2.1W	2.3W	0.27Ω~680Ω
2A	2A 250V	1.9W	2.3W	2.4W	2.8W	0.27Ω~680Ω
	2.2W	2.7W	2.8W	3.2W	0.68Ω~1.2KΩ	
		2.6W	3.2W	3.3W	3.8W	1Ω~1.8KΩ

	Fusing Temperature Code											
Current Rating	Voltage Rating	Α	В	С	Е	F	Н	Ι	J	Κ	L	Resistance Range
		98℃	104℃	117℃	128°C	144℃	152℃	167℃	184℃	227℃	229℃	6
10A 250V	1.4W	1.6W	1.8W	2.0W	2.0W	2.0W	2.0W	2.0W	2.0W	2.0W	0.22Ω~270Ω	
	1.5W	1.7W	1.9W	2.1W	2.2W	2.5W	2.8W	3.0W	3.0W	3.0W	0.27Ω~680Ω	
	1.7W	1.9W	2.2W	2.4W	2.6W	3.1W	3.3W	3.8W	3.8W	3.8W	0.27Ω~680Ω	
	2.0W	2.2W	2.5W	2.8W	3.0W	3.4W	3.8W	4.4W	4.4W	4.4W	0.68Ω~1.2KΩ	
	2.4W	2.6W	3.0W	3.3W	3.6W	4.0W	4.6W	5.2W	5.2W	5.2W	1Ω~1.8KΩ	

5. Construction

NO.	Name	Material generic name
1	Ceramic case	Steatite
2	Filling materials	Cement
3	Lead	Copper wire
4	Thermal fuse	/
5	Ceramic rod	Al ₂ O ₃
6	Alloy	NiCr & CuNi
7	Cap	Iron

6. <u>Marking</u> Example:

Code description and regulation:

1. Mark: UNI OHM

2.Power rating 1.5W, resistance 10 Ω , resistance tolerance J=±5%

3.Thermal fuse: current rating 2A, rated functioning temperature 130°C

Note : The marking code shall be prevailed in kind!

Derating Curve(current rating 10A)

6.1Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

8. <u>Performance Specification</u>

Characteristic	Limits	Test method (GB/T 5729&JIS-C-5201&IEC60115-1)				
Temperature Coefficient	≥20Ω: ±350PPM/°C Max <20Ω: ±400PPM/°C Max	$\begin{array}{c} 4.8 \ \text{Natural resistance changes per temp. Degree centigrade} \\ \hline \begin{array}{c} R_2 \text{-} R_1 \\ \hline \end{array} \times 10^6 \ (\text{PPM/}^{\circ}\text{C}) \\ \hline R_1(t_2 \text{-} t_1) & \ddots \\ \hline R_1: \ \text{Resistance Value at room temperature} & (t_1) \\ R_2: \ \text{Resistance at test temperature} & (t_2) \\ \hline t_1: +25 \ \text{C} \ \text{or specified room temperature} \\ \hline t_2: \ \text{Test temperature} & (-55 \ \text{C} \text{or } 125 \ \text{C} \) \end{array}$				
Short-time overload	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times rcwv for 5 seconds.				
Solderability 95% Coverage Min.		4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder: $245 \degree C \pm 3 \degree C$ Dwell time in solder: 2~3seconds.				
Insulation Resistance	10,000 Megaohm Min	4.6 Apply 100V DC between protective coating and termination for 1 Min then measure				
Resistance to soldering heat	Resistance change rate must be in $\pm (1\%+0.05\Omega)$, and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}C$ solder for 10 ± 1 seconds.				
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V- block and shall be tested at AC potential respectively specified in th above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.				
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 				
Humidity (Steady State)	For Wire-wound: $\Delta R/R$: $\pm (5\%+0.1\Omega)$ Max. With no evidence of mechanical damage.	7.9 Resistance change after 1,000 hours without load in a humidity test chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and 90 to 95% relative humidity.				
Load life	For Wire-wound: $\Delta R/R$: ±(5%+0.1 Ω) Max. With no evidence of mechanical damage.	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70°C ± 2 °C ambient.				
Fusing test	5min (max)	Set oil bath temperature is the resistor's rated functioning temperature; place the resistor into oil bath, record the time which is from resistor into oil bath to resistor open.				

9. <u>Note</u>

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 ℃ under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, Br etc.

10. <u>Record</u>

`Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Apr.15, 2019	Haiyan Chen	Yuhua Xu
2	Modify the temperature coefficient test conditions	4	Nov.08, 2022	Haiyan Chen	Yuhua Xu
3	Updated version	1~6	Aug.01, 2023	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice