

DATA SHEET

Product Name Cutting Semi-Finished Product Resistors

Part NameCO、 CMO SeriesFile No.DIP-SP-084

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33		
Email	marketing@uni-royal.cn		
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.		
	Aeon Technology Corporation		
	Royal Electronic Factory (Thailand) Co., Ltd.		
	Royal Technology (Thailand) Co., Ltd.		

1. Scope

This datasheet is the characteristics of Cutting Semi-Finished Product Resistors manufactured by UNI-ROYAL.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 $1^{\text{th}} \sim 4^{\text{th}}$ digits
- This is to indicate the Chip Resistor. Example: CMO0= Cutting Metal oxide Film Resistors
- 2.2 $5^{\text{th}} \sim 6^{\text{th}}$ indicate material size.

```
Example: 01=1.3×2.7; 20=4×28; 15=7×51
```

- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$
- 2.4 The 8^{th} to 11^{th} digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of 5% &10% series, the 8th digit is "0",the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

For the standard resistance values of $\leq 2\%$ series in, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the zeros following.

- 2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11^{th} digit: $0=10^{0}$ $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$ $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$
- 2.4.3 The 12^{th} , 13^{th} & 14^{th} digits.

The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

2.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Reel packaging types. The following letter code is to be used for some packing quantities:

0=Bulk/Box

2.4.5 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

0=Standard

3. Ordering Procedure

(Example: CMO 4×28 ±5% 100Ω B/B)

Unit: mm

4. Dimension

Туре	Size	L	ΦD	Resistance Range
СОТ	1.3×2.7	2.86-3.16	1.54-1.66	1 Ω ~10 M Ω
	1.7×6.0	6.16-6.66	2.03-2.17	1 Ω ~10 M Ω
	3×8	8.16-8.77	3.32-3.58	1 Ω ~10 M Ω
СМО	4×14	14.06-14.89	4.31-4.59	0.1 Ω ~560K Ω
	4×28	28.10-29.20	4.57-4.75	0.1 Ω ~560K Ω
	4×39	37.70-39.60	4.57-4.75	$0.1 \Omega \sim 560 \mathrm{K} \Omega$
	6.4×22	22.00-23.08	6.88-7.06	$0.1 \Omega \sim 560 \mathrm{K} \Omega$
	7×23	22.96-24.09	7.39-7.61	0.1 Ω ~680K Ω
	7×28	27.96-29.09	7.39-7.61	20 Ω ~150K Ω
	7×51	50.96-52.09	7.39-7.61	50 Ω ~200K Ω

5. <u>Structure</u>

6. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	CO: $\leq 10\Omega$: ± 300 PPM/°C $11\Omega \sim 99K\Omega$: ± 450 PPM/°C $100K\Omega \sim 1M\Omega$: $0 \sim -700$ PPM/°C $1.1M\Omega \sim 10M\Omega$: $0 \sim -1500$ PPM/°C CMO: $4 \times 14; 4 \times 28; 4 \times 39; 6.4 \times 22:$ $\leq 150K\Omega : \pm 350$ PPM/°C $150K\Omega < R \leq 560K\Omega \ 0 \sim -700$ PPM/°C $7 \times 23; 7 \times 28; 7 \times 51:$ ± 350 PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 \cdot R_1}{R_1(t_2 \cdot t_1)} \times 10^6 (PPM/^{\circ}C)$ R_1: Resistance Value at room temperature (t_1); R_2: Resistance at test temperature (t_2) t_1: +25 °C or specified room temperature t_2: Test temperature (-55 °C or 125 °C)		
Solderability 95% coverage Min.		 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C ± 3 °C Dwell time in solder2~3 seconds. 		

7. <u>Precaution for storage/Transportation</u>

- 7.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 7.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 7.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

8. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~4	Mar.20, 2018	Haiyan Chen	Nana Chen
2	 Modify the Ordering Procedure Delete power 	2 3	Mar.09, 2021	Haiyan Chen	Yuhua Xu
3	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
4	Modify the dimension and Performance Specification	3	Aug.07, 2023	Haiyan Chen	Nana Chen

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice