

DATA SHEET

Product Name Metal Plate Crowbar Resistors

 Part Name
 MPCR 500W ±10% 0.25 Ω

 Part No.
 MPCR00K025K500

 File No.
 DIP-SP-095

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This data sheet for approve relates Metal Plate Crowbar Resistors manufactured by UNI-ROYAL.
- 1.2 Anti-vibration, high stability
- 1.3 Application: All kinds of frequency converters and harsh environments.
- 1.4 Compliant with RoHS directive.
- 1.5 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 Coated type, the 1st to 4rd digits are to indicate the product type and 4th digit is the special feature.

Example: MPCR= Metal Plate Crowbar Resistors

- 2.2 $5^{th} \sim 6^{th}$ digits:
- 2.2.1 For power rating of 100W & over, the 5th & 6th digits will be indicated with "00" and the actual wattage being indicated at the last 3 digits $(12^{th} \sim 14^{th})$ of the Part No.
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. Example: $K = \pm 10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 If value belongs to standard value of E-24 series 10%, the 8^{th} code is zero, $9^{th} \sim 10^{th}$ codes are the significant figures of resistance value, and the 11^{th} code is the power of ten.
- 2.4.3 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

 $0=10^{0}$ $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$ $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$

2.5 The $12^{\text{th}} \sim 14^{\text{th}}$ digits.

For power rating over 100watt, the 12th to the 14th digits are to denote the actual wattage of the products.

Example: 500 = 500W

3. Ordering Procedure

4. <u>Ratings</u>

Туре	Power Rating	Resistance	Tolerance	Rated Operational Voltage	Dielectric withstanding Voltage	Operating Temperature
MPCR	500W	0.25 Ω	$\pm 10\%$	11V	3500V	-40°C~85°C

5. <u>Dimension</u> (Unit: mm)

Туре	L±3	L1±2	L3+0/-1	W±3	W1±2	W2 + 0/ - 1	H±3
	355	325	16	203	181	8	123
MPCR 500W	H1±2	$H2\pm 1$	H3±1	P±1	P1±1	$6-\Phi D \pm 0.05$	8-R±0.05
	93	19	23	230	47.5	7	4

6. <u>Performance Specification</u>

Characteristic	Limits	Test Method		
Insulation resistance	≥100MΩ	Apply DC1000V, 1Min		
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	Apply AC3500V, 1Min; Leakage current		
Terminal strength	$\triangle R \le \pm (2\% + 0.05 \Omega)$ with no evidence of mechanical damage	Pull: 90N; 10sec		
Vibration	△R ≤±(3%+0.05 Ω)	Take an amplitude of 0.35mm and continuously sweep back and forth within the frequency range of 10-55-10Hz. The test is only conducted in the perpendicular direction to the installation surface, with a logarithmic frequency sweep form, a frequency sweep rate of 10ct/min, and 5 frequency sweep cycles.		
Humidity (steady state)	$\triangle R \le \pm (5\% + 0.05 \Omega)$ with no evidence of mechanical damage	40±2°C; (93±3) %RH;48h		

Salt spray test	The surface of the resistor should not have obvious oxidation points, rust, or visible damage adhered to it	Continuous atomization at (35 ± 2) °C concentration of 5% by weight of the salt solution (If the volume of the test chamber is limited, parts of the sam material can be used to replace the entire resistor)	C for 91 ne
Rapid change of temperature	$\Delta R/R \le \pm (2\%+0.05 \ \Omega \)$ with no evidence of mechanical damage	Temperature -55	°C~ 200
Load life	$\Delta R/R \leq \pm (5\%+0.05 \ \Omega$) with no evidence of mechanical damage (Allow the resistor to change color)	Rated working voltage at ambient temperature for 96 hours	

7. <u>Note</u>

7.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35° C under humidity between 25 to 75%RH.

Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

7.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

7.3. Storage conditions as below are inappropriate:

a. Stored in high electrostatic environment

b. Stored in direct sunshine, rain, snow or condensation.

c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br,etc.

8. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First edition	1~4	Jul.27, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice