

# **DATA SHEET**

Product Name Radial Leaded Type-PRS Resistors

Part Name PRS Series File No. DIP-SP-043

# Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

| Tel               | +86 512 5763 1411 / 22 /33                    |  |  |
|-------------------|-----------------------------------------------|--|--|
| Email             | marketing@uni-royal.cn                        |  |  |
| Manufacture Plant | Uniroyal Electronics Industry Co., Ltd.       |  |  |
|                   | Aeon Technology Corporation                   |  |  |
|                   | Royal Electronic Factory (Thailand) Co., Ltd. |  |  |
|                   | Royal Technology (Thailand) Co., Ltd          |  |  |





#### 1. Scope

- 1.1 This datasheet is the characteristics of Radial Leaded Type-PRS Series Resistors manufactured by UNI-ROYAL..
- 1.2 Self-extinguishing
- 1.3 Extremely small & sturdy mechanically safe
- 1.4 Excellent flame & moisture resistance
- 1.5 Too low or too high values on Wire -wound &power-film type can be supplied on a case to case basis
- 1.6 Compliant with RoHS directive.
- 1.7 Halogen free requirement.

#### 2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4<sup>th</sup> digit will be "0" Example: PRS=PRS type

- $2.25^{\text{th}} \sim 6^{\text{th}}$  digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5<sup>th</sup> digit will be a number or a letter code and the 6<sup>th</sup> digit will be the letters of W. Example: 5W=5W 7W=7W AW=10W FW=15W
- 2.2.2 For power rating between 20 watt to 99 watt, the 5<sup>th</sup> and the 6<sup>th</sup> digits will show the whole numbers of the power rating itself. Example: 25=25W
- 2.3 The 7<sup>th</sup> digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.  $J=\pm 5\%$  K=  $\pm 10\%$
- 2.4 The 8<sup>th</sup> to 11<sup>th</sup> digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8<sup>th</sup> digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9<sup>th</sup> to 11<sup>th</sup> please refer to point a) of item 4.
  - Example: W12J=1.2Ω W120=12Ω P273=27KΩ

# 2.5 The 12<sup>th</sup>, 13<sup>th</sup> & 14<sup>th</sup> digits.

2.5.1 The  $12^{th}$  digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

- 2.5.2 The 13<sup>th</sup> digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14<sup>th</sup> digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

# 3. Ordering Procedure

(Example: PRS  $5W \pm 5\% 10\Omega B/B$ )







### 4. <u>Marking</u>

Example:



Code description and regulation:

1. Wattage Rating

2. Nominal Resistance Value

3. Resistance Tolerance. J:  $\pm$  5%

K: ± 10%

4. Pattern:

M: Power film

W: Wire wound

Color of marking: Black Ink

Note: The marking code shall be prevailed in kind!

# 5. <u>Ratings & Dimension</u>



| Tuno    |      | Dimension(mm) |     |     | Resistance Range |             |
|---------|------|---------------|-----|-----|------------------|-------------|
| Туре    | W±1  | D±1           | L±1 | P±1 | Wire Wound       | Power Film  |
| PRS 5W  | 10   | 9             | 22  | 5   | 0.1Ω-47Ω         | 48Ω-150ΚΩ   |
| PRS 7W  | 10   | 9             | 35  | 10  | 0.1Ω-680Ω        | 681Ω-200ΚΩ  |
| PRS 10W | 10   | 9             | 45  | 10  | 0.1Ω-910Ω        | 911Ω-200ΚΩ  |
| PRS 15W | 12.5 | 13.5          | 49  | 11  | 1Ω-1ΚΩ           | 1.1ΚΩ-200ΚΩ |
| PRS 20W | 14.5 | 13.5          | 60  | 10  | 1Ω-3.4ΚΩ         | 3.5ΚΩ-200ΚΩ |
| PRS 25W | 14.5 | 13.5          | 64  | 10  | 1Ω-3.4ΚΩ         | 3.5ΚΩ-200ΚΩ |

# 6. Derating Curve



6.1 Voltage rating:



# **Radial Leaded Type-PRS Resistors**



Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

### 7. Structure



| No. | Name               | Material Generic Name              |  |  |
|-----|--------------------|------------------------------------|--|--|
| 1   | Body               | Al <sub>2</sub> O <sub>3</sub>     |  |  |
| 2   | Cap                | Tin plated iron                    |  |  |
| 3   | Lead               | Copper wire                        |  |  |
| 4   | Ceramic case       | Al <sub>2</sub> O <sub>3</sub> CaO |  |  |
| 5   | Filling materials  | SiO <sub>2</sub>                   |  |  |
| 6   | Resistance element | Power film: Metal Oxide Film       |  |  |
|     |                    | Wire-wound: Alloys                 |  |  |

#### 8. <u>Performance Specification</u>

| Characteristic                     | Limits                                                                              | Test Methods<br>(GB/T5729&JIS-C-5201&IEC60115-1)                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Temperature<br>Coefficient         | ≥20Ω: ±350PPM/°C<br><20Ω: ±400PPM/°C                                                | 4.8 Natural resistance changes per temp. Degree centigrade<br>$\frac{R_2 \cdot R_1}{R_1(t_2 \cdot t_1)} \times 10^6 (\text{PPM/°C})$ R_1: Resistance Value at room temperature (t_1);<br>R_2: Resistance at test temperature (t_2)<br>t_1: +25°C or specified room temperature<br>t_2: Test temperature (-55°C or 125°C)                                                                                           |  |  |
| Short-time overload                | Resistance change rate must be in $\pm(5\%+0.05\Omega)$ , and no mechanical damage. | 4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.                                                                                                                                                                                                                                                                       |  |  |
| Dielectric<br>withstanding voltage | No evidence of flashover mechanical damage, arcing or insulation break down.        | 4.7 Resistors shall be clamped in the trough of a 90° metallic V-block<br>and shall be tested at AC potential respectively specified in the above<br>list for 60-70 seconds.for cement fixed resistors the testing voltage is<br>1000V.                                                                                                                                                                            |  |  |
| Terminal strength                  | No evidence of mechanical damage                                                    | <ul> <li>4.16 Direct load:<br/>Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads.<br/>Twist test:<br/>Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.</li> </ul> |  |  |





| Resistance to soldering heat    | Resistance change rate must be in $\pm (1\%+0.05\Omega)$ , and no mechanical damage.                                                                                                                                                                                                                                                                          | 4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}c$ solder for $10\pm1$ seconds.                                                                     |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Solderability                   | 95% coverage Min.                                                                                                                                                                                                                                                                                                                                             | <ul> <li>4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes.</li> <li>Test temp. Of solder:245 °C ±3 °C</li> <li>Dwell time in solder:2~3seconds.</li> </ul> |  |  |
| Humidity<br>(Steady state)      | $\begin{array}{c} \text{Resistance change rate must be in} \\ \pm (5\% + 0.05\Omega) \text{ , and no mechanical damage.} \end{array} \begin{array}{c} \text{4.24 Temporary resistance change after 240 hours exposure in} \\ \text{humidity test chamber controlled at } 40 \pm 2^{\circ} \mathbb{C} \text{ and } 90 \sim 95\% \text{ RH result} \end{array}$ |                                                                                                                                                                                                                         |  |  |
| Load life in humidity           | For Wire-wound: $\Delta R/R$ : $\pm 5\%$<br>For Power film range:<br>$< 100 K\Omega \Delta R/R$ : $\pm 5\%$<br>$\ge 100 K\Omega \Delta R/R$ : $\pm 10\%$                                                                                                                                                                                                      | 7.9 Resistance change after 1000 hours (1.5 hours "ON" $\rightarrow$ 0.5 hours "OFF") at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at 40±2°C and 93%±3% RH.                      |  |  |
| Load life                       | For Wire-wound: $\Delta R/R$ : $\pm 5\%$<br>For Power film range:<br>$< 100K\Omega \Delta R/R$ : $\pm 5\%$<br>$\ge 100K\Omega \Delta R/R$ : $\pm 10\%$                                                                                                                                                                                                        | 4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25\pm2^{\circ}$ C or $70\pm2^{\circ}$ C ambient.      |  |  |
| Low<br>Temperature<br>Storage   | For Wire-wound: $\Delta R/R$ : $\pm 5\%$<br>For Power film range:<br>$< 100K\Omega \Delta R/R$ : $\pm 5\%$<br>$\ge 100K\Omega \Delta R/R$ : $\pm 10\%$                                                                                                                                                                                                        | IEC 60068-2-1 (Aa)<br>Lower limit temperature , for 2H.                                                                                                                                                                 |  |  |
| High<br>Temperature<br>Exposure | For Wire-wound: $\Delta R/R$ : $\pm 5\%$<br>For Power film range:<br>$< 100K\Omega \Delta R/R$ : $\pm 5\%$<br>$\ge 100K\Omega \Delta R/R$ : $\pm 10\%$                                                                                                                                                                                                        | MIL-STD-202 108A<br>Upper limit temperature , for 16H.                                                                                                                                                                  |  |  |

# 9. <u>Note</u>

9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35℃ under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

9.3. Storage conditions as below are inappropriate:

a. Stored in high electrostatic environment

b. Stored in direct sunshine, rain, snow or condensation.

c. Exposed to sea wind or corrosive gases, such as  $Cl_2$ ,  $H_2S$ ,  $NH_3$ ,  $SO_2$ ,  $NO_2$ , Br etc.

#### 10. <u>Record</u>

| Version | Description                                                       | Page   | Date         | Amended by  | Checked by |
|---------|-------------------------------------------------------------------|--------|--------------|-------------|------------|
| 1       | First version                                                     | 1~5    | Mar.20, 2018 | Haiyan Chen | Nana Chen  |
| 2       | Modify characteristic                                             | 4~5    | Feb.26, 2019 | Haiyan Chen | Yuhua Xu   |
| 3       | Modify Resistance Range                                           | 3      | Dec.16, 2019 | Haiyan Chen | Yuhua Xu   |
| 4       | Modify characteristic                                             | 5      | Nov.20,2020  | Song Nie    | Yuhua Xu   |
| 5       | Modify the temperature coefficient test conditions                | 4      | Nov.07, 2022 | Haiyan Chen | Yuhua Xu   |
| 6       | 1.Modify derating curve<br>2.Modify the load life test conditions | 3<br>5 | Sep.27, 2024 | Haiyan Chen | Yuhua Xu   |

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice