

DATA SHEET

Product Name Columnar Type Cement Fixed Resistors

Part Name QHO Series File No. DIP-SP-054

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33	
Email	marketing@uni-royal.cn	
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.	
	Aeon Technology Corporation	
	Royal Electronic Factory (Thailand) Co., Ltd.	
	Royal Technology (Thailand) Co., Ltd.	

1. <u>Scope</u>

- 1.1 This datasheet is the characteristics of Columnar Type Cement Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Circular ceramic
- 1.3 Excellent insulation and moisture resistance
- 1.4 Winding process, good resistance to load
- 1.5 Application: Power supply of frequency converter
- 1.6 Compliant with RoHS directive.
- 1.7 Halogen free requirement.

2. Part No. System

- The standard Part No. includes 14 digits with the following explanation:
- 2.1 Columnar Type Cement Fixed Resistors the 1st to 4rd digits are to indicate the product type.
- Example: QHO0= Columnar Type Cement Fixed Resistors

2.2 5th \sim 6th digits:

- 2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,
 - The following codes are used; and please refer to the following chart for detail:

Wattage	4	5	7	9	11	17
Normal Size	$4\mathbf{W}$	5W	7W	9W	11W	17W

- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ $K=\pm10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the zeros following;

For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the zeros following.

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

 $0=10^{0} 1=10^{1} 2=10^{2} 3=10^{3} 4=10^{4} 5=10^{5} 6=10^{6} J=10^{-1} K=10^{-2} L=10^{-3} M=10^{-4} N=10^{-5} P=10^{-6} 2.4.3 The 12^{th}, 13^{th} \& 14^{th} digits.$

The 12th digit is to denote the Packaging Type with the following codes: B=Bulk /Box

- 2.4.4 Current Sense Resistors, The 13th digit should be filled with "0"
- 2.4.5 Current Sense Resistors, The 14th digit should be filled with "0"

3. Ordering Procedure

4. Dimension

			Unit: mm		
Туре	L±1	L1±3	ΦD±1	d±0.05	
QHO 4W	43	30	8	0.75	
QHO 5W	45	30	8	0.75	
QHO 7W	50	30	9	0.75	
QHO 9W	60	30	9	0.75	
QHO 11W	65	30	9	0.75	
QHO 17W	75	30	9	0.75	
			-		

*Remark: For further information, please contact our sales team.

5. Construction

NO.	NAME	MATERIAL GENERIC NAME
1	CERAMIC CASE	STEATITE
2	CERAMIC ROD	Al ₂ O ₃
3	CAP	IRON
4	FILLING MATERIALS	SiO ₂
5	ALLOY	NiCr&CuNi
6	LEAD	COPPER WIRE

4. <u>Marking</u>

Example:

Code description and regulation:

1. Rating Power

2. Nominal resistance value

3. Resistance tolerance: $k=\pm 10\%$ J= $\pm 5\%$

4. Wire-wound type

Note: The marking code shall be prevailed in kind!

7. Derating Curve

7.1Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

8. <u>Performance Specification</u>

Characteristic	Limits	Test Method (GB/T 5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	≥ 20Ω: ±300PPM/°C <20Ω: ±400PPM/°C	$\begin{array}{l} \label{eq:result} 4.8 \ \text{Natural resistance changes per temp. Degree centigrade} \\ \hline R_2 \text{-} R_1 \\ \hline R_2 \text{-} R_1 \\ \hline R_1 (t_2 \text{-} t_1) \\ \ R_1 : \ \text{Resistance Value at room temperature} (t_1) \ ; \\ \ R_2 : \ \text{Resistance at test temperature} (t_2) \\ \ t_1 : +25^\circ \text{C or specified room temperature} \\ \ t_2 : \ \text{Test temperature} (-55^\circ \text{C or } 125^\circ \text{C}) \\ \end{array}$		
Short-time overload	Resistance change rate is: $\pm (5\%+0.05\Omega)$ Max. With no evidence of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.		
Solderability	95% Coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245°C±3°C Dwell time in solder: 2~3seconds. 		
Resistance to soldering heat	Resistance change rate is: ± (1%+0.05Ω) Max. With no evidence of mechanical damage	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C \pm 5^{\circ}C$ solder for 10 ± 1 seconds.		
Rapid change of temperature	Resistance change rate is: $\pm(5\%+0.05\Omega)$ max. with no evidence of mechanical damage.	4.19 30 min at -55 °C and 30 min at 155°C; 100 cycles.		

Columnar Type Cement Fixed Resistors

Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallicV-block and shall be tested at AC potential respectivelyspecified in the above list for 60-70 seconds.for cement fixedresistors the testing voltage is 1000V.		
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90° at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 		
Humidity (Steady state)	Resistance change rate is: $\pm (5\%+0.05\Omega)$ Max. With no evidence of mechanical damage.	 4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2℃ and 90~95%RH relative humidity 		
Load life in humidity	For Wire-wound: $\Delta R/R$: ±5%	7.9 Resistance change after 1000 hours (1.5 hours "ON" , 0.5 hours "OFF") at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at 40 ± 2 °C and 93% ±3 % RH.		
Load life	For Wire-wound: $\Delta R/R$: ±5%	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25\pm2^{\circ}$ C or $70\pm2^{\circ}$ C ambient.		

9. <u>Note</u>

9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35℃ under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

9.3. Storage conditions as below are inappropriate:

a. Stored in high electrostatic environment

- b. Stored in direct sunshine, rain, snow or condensation.
- c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Apr.15, 2019	Haiyan Chen	Yuhua Xu
2	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
3	1.Modify derating curve 2.Modify the load life test conditions	4 5	Sep.28, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice